The study of comets in interferometry at millimeter wavelengths: Recent results and future prospects

Jérémie Boissier
ESO ALMA Cofund fellow - Italian ALMA Regional Center (INAF-IRA)
boissier@ira.inaf.it

D. Bockelée-Morvan, N. Biver, J. Crovisier, R. Moreno, P. Colomb (LESIA, Observatoire de Paris)
O. Groussin, L. Jorda, P. Lamy (LAM, Observatoire de Marseille)
Outline

• Introduction
 − Generalities about comets
 − Comets at millimeter wavelengths

• Recent results (Plateau de Bure observations)
 − Volatiles in cometary atmospheres
 − Cometary nuclei
 − Dust in cometary atmospheres

• Prospects
 − Comets with ALMA and NOEMA
Introduction: Generalities about comets (1)

- Remnants of the planet formation era
 - Nucleus composition and structure provide us with insights into the conditions in the early Solar System
 - Comet impacts on young planets may have played a role in their evolution

- Comets:
 - Nucleus: ice and refractories
 - Atmosphere (coma): gas and dust

- 2 dynamic classes
 - Ecliptic comets (short period)
 - Oort cloud comets (long period)

- Diversity among comets
 - Chemistry
 - Geology
Introduction: Generalities about comets (2)

- Direct studies of the nucleus are difficult
 - Small objects (~10km)
 - Presence of the atmosphere
- Ground based observations:
 - Size, shape, rotation
- Spacecrafts:
 - Composition, structure
 - But only a handful of objects

Analysis of the coma to derive information about the nucleus
- Continuum: dust
 + Vis: reflected Sun light
 + IR, mm: thermal emission
- Spectroscopy: volatiles
 + Vis: daughter products
 + IR, mm: parent products

Tempel 1 as seen by the Deep Impact spacecraft (Jul. 2005)
Hartley 2 as seen by the Deep Impact spacecraft (Nov. 2010)
Introduction: Comets at mm wavelengths (1)

- Single Dish (Beam $\sim \lambda/D \sim 10''$ for $D = 30m, \lambda = 1mm$)
 - Spectroscopy of molecules in the inner coma ($10^4 km$)
 - Rotational emission lines
 - CO, SO, HCN, H$_2$S, CH$_3$OH, HCOOH, HOCH$_2$CH$_2$OH,...
 - Isotopologues
 - Global parameters of the coma
 - Abundances, outflow velocity, temperature
 - Systematic observations to study comet taxonomy and diversity

Ecliptic comets - Oort Cloud comets - Crovisier et al. 2009, EM&P
Introduction: Comets at mm wavelengths (2)

- **Single Dish** (Beam \(\sim \lambda/D \sim 10'' \) for \(D = 30m, \lambda = 1mm \))
 - Spectroscopy of molecules in the inner coma (10^4 km)
 - Bolometer observations of the dust

OR

- **Interferometry** (Beam \(\sim \lambda/B \sim 1'' \) for \(B = 250m \))
 - Distribution of the molecules in the coma (10^3 km)
 - Dust coma (extended source)
 - Thermal emission of mm grains
 - Production rates, size distribution,...
 - Nucleus properties (point source)
 - Thermal emission of the nucleus
 - Size, surface thermal properties

Radio interferometric observations of comets

1985: Halley (VLA)
1987: Wilson (VLA)
1997: C/1995 O1 Hale-Bopp (VLA, BIMA, OVRO, PdBI)
2004: C/2002 T7 Linear (BIMA)
2004: C/2001 Q4 NEAT (BIMA)

2006: 73P/SW3 (SMA)
2007: 17P/Holmes (PdBI, SMA)
2008: 8P/Tuttle (PdBI)
2010: 103P/Hartley 2 (PdBI)
2012: C/2009 P1 Garradd (PdBI)
2013: C/2011 L4 PanSTARRs
Recent results: 103P/Hartley 2

- **103P/Hartley 2**
 - Ecliptic comet (period=6yrs, perigee=0.12AU in Oct. 2010)
 - Epoxi mission target (flyby in Nov. 2010, A’Hearn et al. 2011)
 - Herschel observations (dust and water)
 + D/H = value in the oceans on Earth (Hartogh et al. 2011)
 - Worldwide support observations
 + 51 ground- and 3 orbit-based observatories

- **Plateau de Bure campaign**
 - 4 nights at the Plateau de Bure
 + 23 Oct. 2010: HCN J(1-0) @ 89 GHz (perigee)
 + 28 Oct. 2010: CH$_3$OH @ 157GHz (perihelion)
 - Simultaneous 30m observations
 + 04 Nov. 2010: HCN J(1-0) @ 89 GHz (6h before Epoxi flyby)
 + 05 Nov. 2010: HCN J(3-2) @ 266GHz (10h after Epoxi flyby)
 - Interferometry (1-6" – 100-500km)
 - Single Dish (position switch, 18-53" – 2000-5000km)
Hartley 2: Temperature in the coma (1)

- Methanol observations
 - 6 lines detected in 3 different beams
Hartley 2: Temperature in the coma (2)

- Temperature profile in the coma
 - Rotation diagrams
 + Linear relation $\ln(A/T_dv) = B - E_u/kT$
 - Temperature increase
 + No LTE or Photolytic heating
 - IR: higher T at 50-100km from the nucleus
 + Time variations or adiabatic cooling?

\[
\ln \left(\frac{8\pi \nu^2 k \int T_b dv}{hc^3 A_{uv}g_u} \right) = \ln \left(\frac{\langle N \rangle}{Z(T_{rot})} \right) - \frac{E_u}{kT_{rot}}
\]
Hartley 2: Morphology of the coma (1)

- HCN observations
Hartley 2: Morphology of the coma (2)

- Astrometry: gas peaks always to the south wrt nucleus
 - Time variations
 - Orientation deduced from Epoxi flyby
- *Outgassing mainly from the small lobe of the nucleus*

![Graphs showing time variations in Hartley 2 coma morphology](image-url)
Hartley 2: Morphology of the coma (2)

- Astrometry: gas peaks always to the south wrt nucleus
 - Time variations
 - Orientation deduced from Epoxi flyby

- Outgassing mainly from the small lobe of the nucleus
Hartley 2: Morphology of the coma (2)

- Astrometry: gas peaks always to the south wrt nucleus
 + Time variations
 + Orientation deduced from Epoxi flyby
- Outgassing mainly from the small lobe of the nucleus
Hartley 2: Thermal emission (1)

- **Fluxes:**
 - 23 Oct. $0.65 \pm 0.03 \text{ mJy} @ 89 \text{ GHz}$
 - 28 Oct. $1.23 \pm 0.09 \text{ mJy} @ 157 \text{ GHz}$
 - 04 Nov. $0.25 \pm 0.04 \text{ mJy} @ 89 \text{ GHz}$
 - 05 Nov. $1.69 \pm 0.48 \text{ mJy} @ 266 \text{ GHz}$

- **Combined contributions:**
 - Dust coma (mm grains)
 - Nucleus
 - Size, shape measured by Epoxi
 - Thermal model
 - $\rightarrow \text{Synthetic emission light curve}$
Hartley 2: Thermal emission (2)

- **Thermal model of the nucleus**
 - Emission light curves
 - Nucleus rotation drives the time variations in the PdB data

- **Dust contribution**
 - \(F_{\text{dust}} = F_{\text{tot}} - F_{\text{nuc}} \)
 - Grain thermal model
 - Size and velocity distribution
 - \(Q_{\text{dust}} \sim 1000 \text{ kg s}^{-1} \) (dust-to-gas ratio >>2)
Nucleus thermal emission

- **8P/Tuttle**
 - Size and shape measured in radar/IR/visible
 + Contact binary
 + Radius 3 km
 - Detection at PdB at 1 mm (Jan. 2008)
 + Negligible dust contribution
 - **Thermal Inertia < 10 SI, low mm emissivity**
 + Boissier et al. 2011

- **C/2009 P1 (Garradd)**
 - Oort cloud comet, unknown size
 + Only 13 reliable size measurements for OC comets
 - Tentative detection (4.8σ) at 2mm with the PdBI
 + Negligible dust contribution
 + **Nucleus radius: 7.8 km**
 - Offset between expected and observed positions
 + Asymmetric coma (sunwards jet) affects obs in the visible
 + Noise peak? Upper limit on the radius 5.6 km
Dust thermal emission (1)

- **17P/Holmes observations in 2007**
 - Outburst on 24 Oct. 2007
 + 10^6 brightness increase
 + Similar to outbursts in 1892 and 1893
 - PdBI (3.4 mm) on 27 and 28 Oct. 2007
 + Image of the large grains (mm) in the coma

- **Modeling the emission radial extension**
 - Dynamic model of the coma
 + Isotropic outflow with decreasing Q_{dust} after outburst
 + Grain size and velocity distributions
 - $n(a) \propto a^q$, at the injection in the coma ($a_{\text{min}}, a_{\text{max}}$)
 - $V(a) = V_0 \left(\frac{a}{a_0}\right)^\delta$, V_0 velocity of grains with size a_0, $\delta=0.5$
 - Grain thermal model
 + Opacity computed for a wide range of parameters
 - Organics, silicates, ice, porosity
 - Mie theory
 - *Opacities in the ALMA bands, Boissier et al. 2012*
 - Simple outflow does not fit the observations
Dust thermal emission (2)

- **2 components are needed**
 - Expanding shell of fast grains
 + Extended emission, short baselines
 - Stable core of slow grains
 + Point source emission
 + Same level on 27 and 28 Oct.

- **Comparison to visible**
 - Constraints on size distributions
 + Different size index for the core and the shell
 - Mass estimates
 + 3-9% of the nucleus was ejected
 + 1 km sized cube (nucleus radius ~2 km)
 + Massive disruption of a part of the nucleus
 + Origin remains unknown
Summary

• **Study of comets in mm interferometry:**
 - Volatiles in the coma
 + Temperature, coma morphology, origin of molecules (nucleus vscoma chemistry)
 - Dust in the coma
 + Production rates, dust properties
 - Nucleus
 + Size, thermal properties

• **Observations limited by the sensitivity**
 + Strongest molecular lines (CH$_3$OH, HCN)
 + Comets very active (Hale-Bopp, Holmes)
 + Comets very close to the Earth (103P, Tuttle)
 + Large nucleus (Garradd)
 - Sensitive search for faint molecular lines had to be made in single dish
 + Very important to constrain the conditions in the early Solar System

• **ALMA and NOEMA will change this**
Comets with ALMA and NOEMA

- **Gain in sensitivity**
 + More comets (both dynamic classes)
 + More lines (minor species, isotopes, new molecules)
 + Monitor distant activity
 + Detect nuclei (emission light curve)
 + Astrometry (precision ~mas)

- **Gain in angular resolution**
 + Extended sources (HNC, CO, H$_2$CO,...)
 + Coma morphology (gas and dust)
 + Gas sources on the surface
 + Separate nucleus from dust contribution

- **Gain in instantaneous uv-coverage**
 + Coma kinematics

- **The chemistry of comets**
 + Detailed composition
 + Taxonomy
 + Composition vs dynamic class
 + Origin of cometary material

- **Cometary atmosphere**
 + Nucleus-coma interface
 + Gas jets
 + Nucleus homogeneity

- **Cometary nuclei**
 + Measure albedo independent sizes
 + Constrain nucleus shape
 + Constrain thermal properties
 + Improve orbit determination
Comets with ALMA and NOEMA

- **Gain in sensitivity**
 + More comets (both dynamic classes)
 + More lines (minor species, isotopes, new molecules)
 + Monitor distant activity
 + Detect nuclei (emission light curve)
 + Astrometry (precision ~mas)

- **Gain in angular resolution**
 + Extended sources (HNC, CO, H$_2$CO,...)
 + Coma morphology (gas and dust)
 + Gas sources on the surface
 + Separate nucleus from dust contribution

- **Gain in instantaneous uv-coverage**
 + Coma kinematics

- **The chemistry of comets**
 + Detailed composition
 + Taxonomy
 + Composition vs dynamic class
 + Origin of cometary material

The origin of cometary matter: nitriles and isotopes in comet C/2011 L4 (PanStarrs)
ALMA in March 2013
(2012.1.00411.S - PI N. Biver)

- **Cometary nuclei**
 + Measure albedo independent sizes
 + Constrain nucleus shape
 + Constrain thermal properties

Physical properties of the nucleus of comet C/2011 L4 (PanStarrs)
ALMA in January March 2013
(2012.1.00143.S - PI O. Groussin)
(+PdBI in April 2013)
• Thanks !
Comets at mm wavelengths

- **Single Dish (Beam ~ \(\lambda/D \sim 10'' \))**
 - Spectroscopy of molecules in the inner coma (10^4 km)
 - Rotational emission lines
 - CO, SO, HCN, H2S, CH3OH, HCOOH, HOCH2CH2OH,...
 - Isotopologues
 - Global parameters of the coma
 - Outflow velocity, temperature, abundances
 - Systematic observations to study comet taxonomy and diversity

 OR

- Bolometer observations of the dust

- **Interferometry (Beam ~ \(\lambda/B \sim 1'' \))**
 - Distribution of the molecules in the coma (10^3 km)
 - Dust coma (extended source)
 - Thermal emission of mm grains
 - Production rates, size distribution,...
 - Nucleus properties (point source)
 - Thermal emission of the nucleus
 - Size, surface thermal properties